
GraphQL
API DAY | FEB. 16. 2023

NILS HARTMANN
https://nilshartmann.net

Slides (PDF): https://graphql.schule/api-day2023

HTTPS://NILSHARTMANN.NET

NILS HARTMANN
nils@nilshartmann.net

Software Developer, Architect and Coach from Hamburg

https://reactbuch.dehttps://graphql.schule/video-kurs

Java, Spring, GraphQL, TypeScript, React

GraphQL

"GraphQL is a query language for APIs and a runtime for
fulfilling those queries with your existing data"

- https://graphql.org

Example application
Source: https://github.com/nilshartmann/spring-graphql-talk

An API for the Beer Advisor

AN API FOR THE BEERADVISOR

Approach 1: Backend defines the API / data

Beer

id
name
price

ratings

shops

Shop

id
name

street
city
phone

Rating

id

author

stars
comment

/api/beer /api/shop /api/rating

AN API FOR THE BEERADVISOR

Approach 2: Client defines the API based on its requirements, views, use-cases, ...

/api/home /api/beer-view /api/shopdetails

id

name

avgStars

id

name

price

shopName

ratings

id

shopName

shopStreet

shopCity

beerNames

AN API FOR THE BEERADVISOR

Approach 3: GraphQL...

AN API FOR THE BEERADVISOR

Approach 3: GraphQL...

• As approach 1: Server defines the data model

Beer

id
name
price

ratings

shops

Rating

id

author

stars
comment

Shop

id
name

street
city
phone

AN API FOR THE BEERADVISOR

Approach 3: GraphQL...

• As approach 1: Server defines the data model
• ...but the client can choose itself in every request the data it wants to read

{ beer { id price { shops { name } }

Beer

id
name
price

ratings

shops

Rating

id

author

stars
comment

Shop

id
name

street
city
phone

GRAPHQL

Specifikation: https://spec.graphql.org/

• Developed by the GraphQL Foundation

• Spec includes:
• Language
• Type System

• General execution behaviour

https://spec.graphql.org/

GRAPHQL

Specifikation: https://spec.graphql.org/

• Developed by the GraphQL Foundation

• Spec includes:
• Language
• Type System

• General execution behaviour

• No implementation!
• Server reference implementation: graphql-js

https://spec.graphql.org/

GRAPHQL APIS

With GraphQL we publish an api based on our domain model
• What data we expose is up to us
• We define the structure of the data we want to expose

👉We explicitly define, how our API looks and behaves

GRAPHQL APIS

With GraphQL we publish an api based on our domain model
• What data we expose is up to us
• We define the structure of the data we want to expose

👉We explicitly define, how our API looks and behaves
👉 GraphQL does not create an API "magically" for us

GraphQL

"GraphQL is a query language for APIs and a runtime for
fulfilling those queries with your existing data"

- https://graphql.org

QUERY LANGUAGE

Objects

Beer

id
name

ratings

shops

Rating

id
author
stars
comment

Shop

id
name

beers

Query

beer
beers

Fields

With the query language, you select fields from objects

QUERY LANGUAGE

Objects

Beer

id
name

ratings

shops

Rating

id
author
stars
comment

Shop

id
name

beers

Query

beer
beers

Fields

With the query language, you select fields from objects
• All queries start on a special root object

Root-Object

QUERY LANGUAGE

Objects

Beer

id
name

ratings

shops

Rating

id
author
stars
comment

Shop

id
name

beers

Query

beer
beers

Fields

With the query language, you select fields from objects
• All queries start on a special root object
• You can only follow paths defined in the schema

Root-Object

query { beers { ratings { comment } } }

QUERY LANGUAGE

Objects

Beer

id
name

ratings

shops

Rating

id
author
stars
comment

Shop

id
name

beers

Query

beer
beers

Fields

With the query language, you select fields from objects
• All queries start on a special root object
• You can only follow paths defined in the schema
• No other "joins" possible

Root-Object

query { shops { id } }
⚡

Demo Query Language
https://github.com/graphql/graphiql

QUERY LANGUAGE

• Structured Language to query/request data from your API

• With the language, you select fields from object graphs

{
 beer {
 id
 name
 ratings {
 stars
 comment
 }
 }
}

Fields

• Structured Language to query/request data from your API

• With the language, you select fields from object graphs

• Fields can have arguments

QUERY LANGUAGE

{
 beer(beerId: "B1") {
 id
 name
 ratings {
 stars
 comment
 }
 }
}

Fields
Arguments

QUERY LANGUAGE

Query Result

• Identical structure as your query

{
 beer(beerId: "B1") {
 id
 name
 ratings {
 stars
 comment
 }
 }
}

"data": {
 "beer": {
 "id": "B1"
 "name": "Barfüßer"
 "ratings": [
 {
 "stars": 3,
 "comment": "grate taste"
 },
 {
 "stars": 5,
 "comment": "best beer ever!"
 }
]
 }
}

QUERY LANGUAGE: OPERATIONS

Operation: describe, what the query should do
• query, mutation, subscription

query GetMeABeer {
 beer(beerId: "B1") {
 id
 name
 price
 }
}

Operation type
Operation name (optional)

QUERY LANGUAGE: MUTATIONS

Mutations
• Mutations can be used to modifiy data
• (would be POST, PUT, PATCH, DELETE in REST)

mutation AddRatingMutation($input: AddRatingInput!) {
 addRating(input: $input) {
 id
 beerId
 author
 comment
 }
}

"input": {
 beerId: "B1",
 author: "Nils",
 comment: "YEAH!"
}

Operation type
Operation name (optional) Variable Definition

Variable Object

QUERY LANGUAGE: MUTATIONS

Subscription
• Client of your API can subscribe to Server Events, published by the

API

subscription NewRatingSubscription {
 newRating: onNewRating {
 id
 beerId
 author
 comment
 }
}

Operation type
Operation name (optional)

Field alias

EXECUTING QUERIES

Queries usually are executed via HTTP
• One single HTTP endpoint /graphql
• queries are sent using POST (or sometimes GET)
• Other HTTP verbs do not matter

• Implementation depends on your serverside framework
• There is a specification being developed standardizing the

server protocol

GraphQL
Server

PART II

RUNTIME (AKA: YOUR APPLICATION)

GraphQL
Server

"GraphQL is a query language for APIs and a runtime for
fulfilling those queries with your existing data"

- https://graphql.org

GRAPHQL BACKENDS

Implementing a GraphQL backend

• Specification does not a force a specific implementation
• There are frameworks for a lot of programming languages
• Almost all of them are following the same principles

GRAPHQL BACKENDS

Processing a GraphQL request

• GraphQL request ("document") is received by your backend

GRAPHQL BACKENDS

Processing a GraphQL request

• GraphQL request ("document") is received by your backend

• GraphQL framework parses and validates the operations
• Syntax valid? Valid according to schema?
• If invalid, error is sent to the client

GRAPHQL BACKENDS

Processing a GraphQL request

• GraphQL request ("document") is received by your backend

• GraphQL framework parses and validates the operations
• Syntax valid? Valid according to schema?
• If invalid, error is sent to the client

• Otherwise the request will be processed...

GRAPHQL BACKENDS

Processing a GraphQL request

• For each field, a resolver function is invoked by the framework
• A resolver function determines the value for a field

GRAPHQL BACKENDS

Processing a GraphQL request

• For each field, a resolver function is invoked by the framework
• A resolver function determines the value for a field
• It's our task to implement the resolver functions
• ("Implement a GraphQL API" == "Implement resolver functions")

GRAPHQL BACKENDS

Processing a GraphQL request

• For each field, a resolver function is invoked by the framework
• A resolver function determines the value for a field
• It's our task to implement the resolver functions
• ("Implement a GraphQL API" == "Implement resolver functions")

• Result from resolver functions is validated by the GraphQL framework

GRAPHQL BACKENDS

Processing a GraphQL request

• For each field, a resolver function is invoked by the framework
• A resolver function determines the value for a field
• It's our task to implement the resolver functions
• ("Implement a GraphQL API" == "Implement resolver functions")

• Result from resolver functions is validated by the GraphQL framework

• Result is sent back to client

IMPLEMENTING A GRAPHQL API

Implementing a GraphQL API

• Step one: defining a schema that expresses your API
• Step two: implement the logic for determining the data

Demo GraphQL with Java
https://spring.io/projects/spring-graphql

GRAPHQL SCHEMA

Step 1: GraphQL schema

• Every GraphQL API must be defined in a Schema
• The schema defines Types and Fields
• Only requests and responses that match the schema are processed

and returned to the client

• Schema Definition Language (SDL)

GRAPHQL SCHEMA

Schema Definition with SDL

type Rating {
id: ID!
comment: String!
stars: Int

}

Object Type

Fields

GRAPHQL SCHEMA

Schema Definition with SDL

type Rating {
id: ID!
comment: String!
stars: Int

}

Return Type (non-nullable)

Return Type (nullable)

GRAPHQL SCHEMA

Schema Definition with SDL

type Rating {
id: ID!
comment: String!
stars: Int
author: User!

}

type User {
id: ID!
name: String!

}

Referenz auf anderen Typ

GRAPHQL SCHEMA

Schema Definition with SDL

type Rating {
id: ID!
comment: String!
stars: Int
author: User!

}

type User {
id: ID!
name: String!

}

type Beer {
name: String!
ratings: [Rating!]!

} Liste / Array

GRAPHQL SCHEMA

Schema Definition with SDL

type Rating {
id: ID!
comment: String!
stars: Int
author: User!

}

type User {
id: ID!
name: String!

}

type Beer {
name: String!
ratings: [Rating!]!
ratingsWithStars(stars: Int!): [Rating!]!

}
Arguments

GRAPHQL SCHEMA

Root-Types: Entry-Points into the API (Query, Mutation, Subscription)

type Query {
beers: [Beer!]!
beer(beerId: ID!): Beer

}

type Mutation {
addRating(newRating: NewRating): Rating!

}

type Subscription {
onNewRating: Rating!

}

Root-Type
("Subscription")

Root-Type
("Query) Root-Fields

Root-Type
("Mutation")

GRAPHQL BACKENDS

Example: graphql-java

• Note that there are other (high level) frameworks for Java (Spring for GraphQL,
MicroProfile GraphQL) that you should consider, but all of these are backed by graphql-
java

DATA FETCHERS

DataFetcher

• A DataFetcher determines and returns the value for a Field
• Required for all fields of your Root-Types (Query, Mutation)
• For all other fields, Reflection is used (getter/setter, Maps, ...) by

default

• A DataFetcher is a functional Java interface

DATA FETCHERS

DataFetcher

• In graphql-java resolver functions are called DataFetcher

DATA FETCHERS

DataFetcher

• In graphql-java resolver functions are called DataFetcher

• A DataFetcher determines and returns the value for a Field
• Required for all fields of your Root-Types (Query, Mutation)
• For all other fields, Reflection is used (getter/setter, Maps, ...) by

default

DATA FETCHERS

DataFetcher

• In graphql-java resolver functions are called DataFetcher

• A DataFetcher determines and returns the value for a Field
• Required for all fields of your Root-Types (Query, Mutation)
• For all other fields, Reflection is used (getter/setter, Maps, ...) by

default

• A DataFetcher is a functional Java interface

interface DataFetcher<T> {
T get(DataFetchingEnvironment environment);

}

DATAFETCHER

Implementing DataFetchers
• Example: A simple field

type Query {
beer(id: ID!): Beer

}

Schema Definition

DATAFETCHER

Implementing DataFetchers
• Example: A simple field

Schema Definition

Query

type Query {
beer(id: ID!): Beer

}

query { beer(id: "B1")
{ name price }
}

"data": {
"beer":
{ "name": "...", "price": 5.3 }

}

DATAFETCHER

Implementing DataFetchers
• Example: A simple field

public class QueryDataFetchers {
DataFetcher<Beer> beer = new DataFetcher<>() {
public Beer get(DataFetchingEnvironment env) {
String id = env.getArgument("id");
return beerRepository.getBeerById(id);

}
};

}

query { beer(id: "B1")
{ name price }
}

Schema Definition

Query

Data Fetcher

"data": {
"beer":
{ "name": "...", "price": 5.3 }

}

type Query {
beer(id: ID!): Beer

}

DATAFETCHER

Implementing DataFetchers
• Example: A simple field

public class QueryDataFetchers {
DataFetcher<Beer> beer = new DataFetcher<>() {
public Beer get(DataFetchingEnvironment env) {
String id = env.getArgument("id");
return beerRepository.getBeerById(id);

}
};

}

query { beer(id: "B1")
{ name price }
}

Schema Definition

Query

Data Fetcher

"data": {
"beer":
{ "name": "...", "price": 5.3 }

}

type Query {
beer(id: ID!): Beer

}

Assume Beer Pojo
contains "name" and "price" property

DATAFETCHER

DataFetcher: Mutations
• technically the same as queries, but you're allowed to modify data here

input AddRatingInput
{
beerId: ID!
stars: Int!

}

public class MutationDataFetchers {
DataFetcher<Rating> addRating = new DataFetcher<>() {
public Rating get(DataFetchingEnvironment env) {
Map input = env.getArgument("input");
String beerId = input.get("beerId");
Integer starts = input.get("stars");

return ratingService.newRating(beerId, stars);
}

};
}

Schema Definition

Data Fetcher

type Mutation {
addRating(input: AddRatingInput!): Rating!

}

DATAFETCHER

DataFetcher: Subscriptions
• Same as DataFetchers for Query, but must return Reactive Streams Publisher
• Typically used in Web-Clients with WebSockets

type Subscription {
onNewRating: Rating!

}

import org.reactivestreams.Publisher;

public class SubscriptionDataFetchers {
DataFetcher<Publisher<Rating>> onNewRating = new DataFetcher<>() {
public Publisher<Rating> get(DataFetchingEnvironment env) {
Publisher<Rating> publisher = getRatingPublisher();

return publisher;
}

};
}

OBJECT GRAPHS

DataFetcher for own Types (not Root Types)
• By default graphql-java uses a "PropertyDataFetcher" for all fields that are not on Root

Types
• PropertyDataFetcher uses Reflection to return the requested data from your Pojo
• (Fields not defined in your schema, but part of your Pojo are never returned to the client!)

• Your returned Pojo and GraphQL schema might not match
• Different/missing fields

OBJECT GRAPHS

query {
beer(id: 1) {
name
shops {
name

}
}

}

public class Beer {
String id;
String name;
...

}

DataFetcher for own Types (not Root Types)
• Example: There is no field "shops" on our Beer class

no 'shops' here
🤔

OBJECT GRAPHS

DataFetcher for own Types (not Root Types)
• You can write DataFetcher for all fields in your GraphQL API
• Non-Root Fetcher works the same, as DataFetchers for Root-Fields
• They receive their parent object as "Source"-Property from the DataFetchingEnvironment

public class BeerDataFetchers {
DataFetcher<List<Shop>> shops = new DataFetcher<>() {
public String get(DataFetchingEnvironment env) {
Beer parent = env.getSource();
String beerId = parent.getId();

return shopRepository.findShopsSellingBeer(beerId);
}

};
}

query {
beer(id: 1) {
name
shops {

name
}

}
}

HTTPS://NILSHARTMANN.NET | @NILSHARTMANN

Thank you!
Slides: https://graphql.schule/api-day2023 (PDF)

Source code: https://github.com/nilshartmann/spring-graphql-talk

Contakt: nils@nilshartmann.net

🌻

