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GraphQL

"GraphQL is a query language for APIs and a runtime for
fulfilling those queries with your existing data"

- https://graphql.org



Example application
Source: https://github.com/nilshartmann/spring-graphql-talk



An API for the Beer Advisor



AN API FOR THE BEERADVISOR

Approach 1: Backend defines the API / data
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AN API FOR THE BEERADVISOR

Approach 2: Client defines the API based on its requirements, views, use-cases, ...
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AN API FOR THE BEERADVISOR

Approach 3: GraphQL...

• As approach 1: Server defines the data model
• ...but the client can choose itself in every request the data it wants to read

{ beer { id price { shops { name } }
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GRAPHQL

Specifikation: https://spec.graphql.org/

• Developed by the GraphQL Foundation

• Spec includes:
• Language
• Type System

• General execution behaviour

https://spec.graphql.org/


GRAPHQL

Specifikation: https://spec.graphql.org/

• Developed by the GraphQL Foundation

• Spec includes:
• Language
• Type System

• General execution behaviour

• No implementation!
• Server reference implementation: graphql-js

https://spec.graphql.org/


GRAPHQL APIS

With GraphQL we publish an api based on our domain model
• What data we expose is up to us
• We define the structure of the data we want to expose

👉We explicitly define, how our API looks and behaves



GRAPHQL APIS

With GraphQL we publish an api based on our domain model
• What data we expose is up to us
• We define the structure of the data we want to expose

👉We explicitly define, how our API looks and behaves
👉 GraphQL does not create an API "magically" for us



GraphQL

"GraphQL is a query language for APIs and a runtime for
fulfilling those queries with your existing data"

- https://graphql.org
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With the query language, you select fields from objects
• All queries start on a special root object
• You can only follow paths defined in the schema

Root-Object

query { beers { ratings { comment } } }



QUERY LANGUAGE

Objects

Beer

id
name

ratings

shops

Rating

id
author
stars
comment

Shop

id
name

beers

Query

beer
beers

Fields

With the query language, you select fields from objects
• All queries start on a special root object
• You can only follow paths defined in the schema
• No other "joins" possible

Root-Object

query { shops { id } }
⚡



Demo Query Language
https://github.com/graphql/graphiql



QUERY LANGUAGE

• Structured Language to query/request data from your API

• With the language, you select fields from object graphs

{
  beer {
    id
    name
    ratings {
      stars
      comment
    }
  }
}

Fields



• Structured Language to query/request data from your API

• With the language, you select fields from object graphs

• Fields can have arguments

QUERY LANGUAGE

{
  beer(beerId: "B1") {
    id
    name
    ratings {
      stars
      comment
    }
  }
}

Fields
Arguments



QUERY LANGUAGE

Query Result

• Identical structure as your query

{
  beer(beerId: "B1") {
    id
    name
    ratings {
      stars
      comment
    }
  }
}

"data": {
  "beer": {
    "id": "B1"
    "name": "Barfüßer"
    "ratings": [
      { 
        "stars": 3,
        "comment": "grate taste"
      },
      {
        "stars": 5,
        "comment": "best beer ever!"
      }
    ]
  }
}



QUERY LANGUAGE: OPERATIONS

Operation: describe, what the query should do
• query, mutation, subscription

query GetMeABeer {
  beer(beerId: "B1") {
    id
    name
    price
  }
}

Operation type
Operation name (optional)



QUERY LANGUAGE: MUTATIONS

Mutations
• Mutations can be used to modifiy data
• (would be POST, PUT, PATCH, DELETE in REST)

mutation AddRatingMutation($input: AddRatingInput!) {
  addRating(input: $input) {
    id
    beerId
    author
    comment
  }
}

"input": {
    beerId: "B1",
    author: "Nils",
    comment: "YEAH!"
}

Operation type
Operation name (optional) Variable Definition

Variable Object



QUERY LANGUAGE: MUTATIONS

Subscription
• Client of your API can subscribe to Server Events, published by the

API

subscription NewRatingSubscription {
  newRating: onNewRating {
    id
    beerId
    author
    comment
  }
}

Operation type
Operation name (optional)

Field alias



EXECUTING QUERIES

Queries usually are executed via HTTP
• One single HTTP endpoint /graphql
• queries are sent using POST (or sometimes GET)
• Other HTTP verbs do not matter

• Implementation depends on your serverside framework
• There is a specification being developed standardizing the

server protocol



GraphQL
Server

PART II



RUNTIME (AKA: YOUR APPLICATION)

GraphQL
Server

"GraphQL is a query language for APIs and a runtime for
fulfilling those queries with your existing data"

- https://graphql.org



GRAPHQL BACKENDS

Implementing a GraphQL backend

• Specification does not a force a specific implementation
• There are frameworks for a lot of programming languages
• Almost all of them are following the same principles
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• GraphQL request ("document") is received by your backend
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GRAPHQL BACKENDS

Processing a GraphQL request

• GraphQL request ("document") is received by your backend

• GraphQL framework parses and validates the operations
• Syntax valid? Valid according to schema?
• If invalid, error is sent to the client

• Otherwise the request will be processed...
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GRAPHQL BACKENDS

Processing a GraphQL request

• For each field, a resolver function is invoked by the framework
• A resolver function determines the value for a field
• It's our task to implement the resolver functions
• ("Implement a GraphQL API" == "Implement resolver functions")

• Result from resolver functions is validated by the GraphQL framework

• Result is sent back to client



IMPLEMENTING A GRAPHQL API

Implementing a GraphQL API

• Step one: defining a schema that expresses your API
• Step two: implement the logic for determining the data



Demo GraphQL with Java
https://spring.io/projects/spring-graphql



GRAPHQL SCHEMA

Step 1: GraphQL schema

• Every GraphQL API must be defined in a Schema
• The schema defines Types and Fields
• Only requests and responses that match the schema are processed

and returned to the client

• Schema Definition Language (SDL)



GRAPHQL SCHEMA

Schema Definition with SDL

type Rating {
id: ID!
comment: String!
stars: Int

}

Object Type

Fields



GRAPHQL SCHEMA

Schema Definition with SDL

type Rating {
id: ID!
comment: String!
stars: Int

}

Return  Type (non-nullable)

Return  Type (nullable)



GRAPHQL SCHEMA

Schema Definition with SDL

type Rating {
id: ID!
comment: String!
stars: Int
author: User!

}

type User {
id: ID!
name: String!

}

Referenz auf anderen Typ



GRAPHQL SCHEMA

Schema Definition with SDL

type Rating {
id: ID!
comment: String!
stars: Int
author: User!

}

type User {
id: ID!
name: String!

}

type Beer {
name: String!
ratings: [Rating!]!

} Liste / Array



GRAPHQL SCHEMA

Schema Definition with SDL

type Rating {
id: ID!
comment: String!
stars: Int
author: User!

}

type User {
id: ID!
name: String!

}

type Beer {
name: String!
ratings: [Rating!]!
ratingsWithStars(stars: Int!): [Rating!]!

}
Arguments



GRAPHQL SCHEMA

Root-Types: Entry-Points into the API (Query, Mutation, Subscription)

type Query {
beers: [Beer!]!
beer(beerId: ID!): Beer

}

type Mutation {
addRating(newRating: NewRating): Rating!

}

type Subscription {
onNewRating: Rating!

}

Root-Type
("Subscription")

Root-Type
("Query) Root-Fields

Root-Type
("Mutation")



GRAPHQL BACKENDS

Example: graphql-java

• Note that there are other (high level) frameworks for Java (Spring for GraphQL, 
MicroProfile GraphQL) that you should consider, but all of these are backed by graphql-
java



DATA FETCHERS

DataFetcher

• A DataFetcher determines and returns the value for a Field
• Required for all fields of your Root-Types (Query, Mutation)
• For all other fields, Reflection is used (getter/setter, Maps, ...) by

default

• A DataFetcher is a functional Java interface
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DATA FETCHERS

DataFetcher

• In graphql-java resolver functions are called DataFetcher

• A DataFetcher determines and returns the value for a Field
• Required for all fields of your Root-Types (Query, Mutation)
• For all other fields, Reflection is used (getter/setter, Maps, ...) by

default

• A DataFetcher is a functional Java interface

interface DataFetcher<T> {
T get(DataFetchingEnvironment environment);

}



DATAFETCHER

Implementing DataFetchers
• Example: A simple field

type Query {
beer(id: ID!): Beer

}

Schema Definition



DATAFETCHER

Implementing DataFetchers
• Example: A simple field

Schema Definition

Query

type Query {
beer(id: ID!): Beer

}

query { beer(id: "B1")
{ name price }
}

"data": {
"beer": 
{ "name": "...", "price": 5.3 }

}  



DATAFETCHER

Implementing DataFetchers
• Example: A simple field

public class QueryDataFetchers {
DataFetcher<Beer> beer = new DataFetcher<>() {
public Beer get(DataFetchingEnvironment env) {
String id = env.getArgument("id");
return beerRepository.getBeerById(id);

}
};

}

query { beer(id: "B1")
{ name price }
}

Schema Definition

Query

Data Fetcher

"data": {
"beer": 
{ "name": "...", "price": 5.3 }

}  

type Query {
beer(id: ID!): Beer

}



DATAFETCHER

Implementing DataFetchers
• Example: A simple field

public class QueryDataFetchers {
DataFetcher<Beer> beer = new DataFetcher<>() {
public Beer get(DataFetchingEnvironment env) {
String id = env.getArgument("id");
return beerRepository.getBeerById(id);

}
};

}

query { beer(id: "B1")
{ name price }
}

Schema Definition

Query

Data Fetcher

"data": {
"beer": 
{ "name": "...", "price": 5.3 }

}  

type Query {
beer(id: ID!): Beer

}

Assume Beer Pojo
contains "name" and "price" property



DATAFETCHER

DataFetcher: Mutations
• technically the same as queries, but you're allowed to modify data here

input AddRatingInput
{
beerId: ID!
stars: Int!

}

public class MutationDataFetchers {
DataFetcher<Rating> addRating = new DataFetcher<>() {
public Rating get(DataFetchingEnvironment env) {
Map input = env.getArgument("input");
String beerId = input.get("beerId");
Integer starts = input.get("stars");

return ratingService.newRating(beerId, stars);      
}

};
}

Schema Definition

Data Fetcher

type Mutation {
addRating(input: AddRatingInput!): Rating!

}



DATAFETCHER

DataFetcher: Subscriptions
• Same as DataFetchers for Query, but must return Reactive Streams Publisher
• Typically used in Web-Clients with WebSockets

type Subscription {
onNewRating: Rating!

}

import org.reactivestreams.Publisher;

public class SubscriptionDataFetchers {
DataFetcher<Publisher<Rating>> onNewRating = new DataFetcher<>() {
public Publisher<Rating> get(DataFetchingEnvironment env) {
Publisher<Rating> publisher = getRatingPublisher();

return publisher;
}

};
}



OBJECT GRAPHS

DataFetcher for own Types (not Root Types)
• By default graphql-java uses a "PropertyDataFetcher" for all fields that are not on Root 

Types
• PropertyDataFetcher uses Reflection to return the requested data from your Pojo
• (Fields not defined in your schema, but part of your Pojo are never returned to the client!)

• Your returned Pojo and GraphQL schema might not match
• Different/missing fields



OBJECT GRAPHS

query {
beer(id: 1) {
name
shops {
name

}
}

}

public class Beer {
String id;
String name;
...

}

DataFetcher for own Types (not Root Types)
• Example: There is no field "shops" on our Beer class

no 'shops' here
🤔



OBJECT GRAPHS

DataFetcher for own Types (not Root Types)
• You can write DataFetcher for all fields in your GraphQL API
• Non-Root Fetcher works the same, as DataFetchers for Root-Fields
• They receive their parent object as "Source"-Property from the DataFetchingEnvironment

public class BeerDataFetchers {
DataFetcher<List<Shop>> shops = new DataFetcher<>() {
public String get(DataFetchingEnvironment env) {
Beer parent = env.getSource();
String beerId = parent.getId();

return shopRepository.findShopsSellingBeer(beerId);
}

};
}

query {
beer(id: 1) {
name
shops {

name
}

}
}



HTTPS://NILSHARTMANN.NET | @NILSHARTMANN

Thank you!
Slides: https://graphql.schule/api-day2023 (PDF)

Source code: https://github.com/nilshartmann/spring-graphql-talk 

Contakt: nils@nilshartmann.net

🌻


