

NILS HARTMANN

nils@nilshartmann.net

Software Developer, Architect and Coach from Hamburg
Java, Spring, GraphQL, TypeScript, React

R . Nils Hartmann - Oliver Zeigermann
React
» VIDEOKURS

Nils Hartmann

Grundlagen, fortgeschrittene Techniken und

G h Q L Praxistipps — mit TypeScript und Redux

APIs mit Spring Boot entwickeln

Der Praxiskurs fiir die Web-API-Entwicklung dpunkteriag
Do |

https://graphgl.schule/video-kurs https://reactbuch.de

"GraphQL is a query language for APIs and a runtime for
fulfilling those queries with your existing data"

- https://graphql.org

GraphQL
S

® © ®] Beer Advisor! - GraphQL Java X Nits
€& C | @ localhost:9080 Q% % & 0

where to buy:

Faucibus Corp | Blandit |
Eu Odio Tristique Company |
Lorem Auctor Quis LLC

what customers say:

waldemar vasu: ,very good!“ #k#k#*s:

alessa bradley: ,,phenomenal!* %%

lauren jones: ,,delicate buttery flavor,
with notes of sherry and old newsprint*
g gieied

...and what do you think?

Please login first
Your login:

Login

https: //github nilshar 1 1 1

Example application

An API for the Beer Advisor

Approach 1: Backend defines the API [data

/api/beer /api/shop /api/rating

Beer

Shop

id
name
price

id

id
name
street author

city
phone

ratings

stars
comment

shops

Approach 2: Client defines the APl based on its requirements, views, use-cases, ...

/api/home /api/beer-view /api/shopdetails

i id id
id
name shopName
name

price shopStreet

avgStars

shopName

shopCity

ratings

beerNames

Approach 3: GraphQL...

Approach 3: GraphQL...
e As approach 1: Server defines the data model

Shop Beer
id

id ae
name name
price
street author
city ratings

phone stars

shops comment

Approach 3: GraphQL...
e As approach 1: Server defines the data model
e ...but the client can choose itself in every request the data it wants to read

{ beer { id price { shops { name } }

Shop Beer
id

id as
name name
price
street author
city ratings

phone stars

shops comment

Specifikation: https://spec.graphgl.org/

» Developed by the GraphQL Foundation

* Specincludes:
* Language
* Type System

* General execution behaviour

https://spec.graphql.org/

Specifikation: https://spec.graphgl.org/

» Developed by the GraphQL Foundation

* Specincludes:
* Language
* Type System

* General execution behaviour

* No implementation!
» Server reference implementation: graphql-js

https://spec.graphql.org/

With GraphQL we publish an api based on our domain model
* What data we expose is up to us

» We define the structure of the data we want to expose

<~ We explicitly define, how our API looks and behaves

With GraphQL we publish an api based on our domain model
* What data we expose is up to us
» We define the structure of the data we want to expose

<~ We explicitly define, how our API looks and behaves
=" GraphQL does not create an API "magically" for us

"GraphQL is a query language for APIs and a runtime for
fulfilling those queries with your existing data”

- https.//graphgl.org

GraphQL
S

With the query language, you select fields from objects

Rating

= id
Objects -~ author
\ stars
comment

Beer

id
name
ratings

shops

Fields -

With the query language, you select fields from objects
* All queries start on a special root object

Rating

o id
Objects -~ author
\ stars
comment

Beer

id
name
ratings

shops

Root-Object

Fields -

With the query language, you select fields from objects
* All queries start on a special root object

Rating

* You can only follow paths defined in the schema id
Objects -~ author

T ratings 7!

Root-Object

query { beers { ratings { comment } } }

With the query language, you select fields from objects
* All queries start on a special root object

Rating

* You can only follow paths defined in the schema id
Objects -~ author
N stars
comment

* No other "joins" possible

Beer
id
name
ratings

shops

Root-Object

4
query { shops { id } }

® © ® [craphiaL x Nils
< C' | ® localhost:9000/graphigl?operationName=BeerAppQuery&query=quer.. Y B /A B g
GraphiQL () | Prettity | History < Schema Query N
| qiery’ BeerAppQuery (B Q_ Search Query...
2+ beer © “data
3 id o No Description
4 name .
5 price
i arfiger”, FIELDS
7+ ratings { : : "3,80 EUR",
8 1d .
s beerId 4 beers: [Beer!]!
10 author
5 Eaane - Returns all beers in our store
12 Waldemar Vasu",
3 } “Exceptionall” beer(beerld: String): Beer
i; _ b Returns the Beer with the specified Id
7} heer L)
Madhukar Kareen", ratings: [Rating!]!

ratings "comment": "Awwwesome!"

ping b All ratings stored in our system

—schem "id": "R14",

_type "beerId": "B1", ping: Processlnfo!

Returns all beers in our store “author": "Emily Davis",

"comment”: "Off-putting buttery nose, laced Returns health information about the runnin
with a touch of caramel and hamster cage.” process
1
b
= {

Frydenlund",
"150 NOK",

v “ratings": [
14%- i=po
"beer1d": "B2",
"author": "Andrea Gouyen",

“comment”: "Very good!"

Demo Query Language

https://github.com/graphgl/graphiq|

Fields {
}

}
}

 Structured Language to query/request data from your API
* With the language, you select fields from object graphs

{
|beer|(beerId: "B1") {

Arguments
Fields {
}
}
}

 Structured Language to query/request data from your API
* With the language, you select fields from object graphs

* Fields can have arguments

Query Result

"data": {
"beer": {
gty W[ZiLW
{ "name": "BarfuRer"
beer (beerId: "B1") { "ratings": [
id {
name "stars": 3,
ratings { "comment": "grate taste"
stars — },
comment {
} "stars": 5,
} "comment": "best beer ever!"
} }
1
}
}

* Identical structure as your query

Operation: describe, what the query should do
e query, mutation, subscription

Operation type

Operation name (optional)
|
query||GetMeABeer| {

beer (beerId: "B1") {
id
name

price

}

Mutations

* Mutations can be used to modifiy data
« (would be POST, PUT, PATCH, DELETE in REST)

Operation type

| Operation name (optional) Variable Pefinition
|

[mutation|[AddRatingMutation|($input: AddRatingInput!) {
addRating(input: $input) {
id
beerId
author

comment
}
}

"input": {
beerId: "B1",
author: "Nils",
comment: "YEAH!"

— Variable Object

Subscription
* Client of your API can subscribe to Server Events, published by the
API

Operation type

Operation name (optional)
I

[subscription|NewRatingSubscription| {

' newRating: onNewRating {

_ _ . Hd
Field alias beerId

author
comment

Queries usually are executed via HTTP

* Onesingle HTTP endpoint /graphql
* queries are sent using POST (or sometimes GET)
* Other HTTP verbs do not matter

* Implementation depends on your serverside framework
* Thereis a specification being developed standardizing the
server protocol

PART li

GraphQL
Server

"GraphQL is a query language for APIs and a runtime for
fulfilling those queries with your existing data"

- https.//graphgl.org

GraphQL
Server

Implementing a GraphQL backend

» Specification does not a force a specific implementation
* There are frameworks for a lot of programming languages
* Almost all of them are following the same principles

Processing a GraphQL request

» GraphQL request ("document") is received by your backend

Processing a GraphQL request
* GraphQL request ("document") is received by your backend
* GraphQL framework parses and validates the operations

« Syntaxvalid? Valid according to schema?
* Ifinvalid, error is sent to the client

Processing a GraphQL request
» GraphQL request ("document") is received by your backend
* GraphQL framework parses and validates the operations

« Syntaxvalid? Valid according to schema?

* Ifinvalid, error is sent to the client

* Otherwise the request will be processed...

Processing a GraphQL request

* For each field, a resolver function is invoked by the framework
* Aresolver function determines the value for a field

Processing a GraphQL request

* Foreachfield, a resolver function is invoked by the framework
* Aresolver function determines the value for a field
* It's our task to implement the resolver functions
* ("Implement a GraphQL API" == "Implement resolver functions")

Processing a GraphQL request

* Foreachfield, a resolver function is invoked by the framework
* Aresolver function determines the value for a field
* It's our task to implement the resolver functions
* ("Implement a GraphQL API" == "Implement resolver functions")

* Result from resolver functions is validated by the GraphQL framework

Processing a GraphQL request

* Foreachfield, a resolver function is invoked by the framework
* Aresolver function determines the value for a field
* It's our task to implement the resolver functions
* ("Implement a GraphQL API" == "Implement resolver functions")

* Result from resolver functions is validated by the GraphQL framework

* Resultis sent back to client

Implementing a GraphQL API

» Step one: defining a schema that expresses your API
« Step two: implement the logic for determining the data

Obeeradvisor > Obackend > src > Dmain > java > nh > graphal > beeradvisor > graphal > © RatingController
E Project Q X Beer.java © BeerAdvisor6raphQLController.java Q
- Cabeeradvisor ~/develop/spring-grapha 32 } Y8
- Cabackend 33
g &
L) Di“) 34 aQueryMapping
~ [amain
e Jave 35 public Optional<Beer> beer(dArgument String beerId) { return beerRepository.findById(beerId); }
> nh.graphql.beeradvisor 38
> nh.graphgl.beeradvisor.2 39 @QueryMapping
> BInh.graphal.beeradvisor.z X
5 Mo raanat beoraavisers 40 public Iterable<Beer> beers() { return beerRepository.findall(); }
~ [Jnh.graphql.beeradvisor.¢ a3
® tmatinalneet 44 aMutationMapping
> © AddressField ? 9
> ©BeerAdvisorGraphglton: 45 public Beer updateBeerName(@Argument String beerId, @Argument String newName) {
> ©BeerAdvisorTracingIns' 46 return beerAdvisorService.updateBeer(beerId, newName);
> ©RatingController 2)
> ©RatingPublisher
> © ShopController 48
> ©utils 49 @QueryMapping
Ui 50 public Shop shop(@Argument String shopId) { return shopRepository.findshop(shopId); }
o test
@ .gitignore 53 I
7 build.gradle 54 @QueryMapping
> C3frontend gy i g .
ot 55 public List<Shop> shops() { return shopRepository.findAll(); }
> Digradte
> [auserservice 28
= .gitattributes 59 @MutationMapping
LA 60 public Rating addRating(@valid @Argument AddRatingInput ratingInput) {
1} .graphqlconfig p .
B gradiew 61 logger.debug("Rating Input {}", ratingInput);
= gradiew.bat 62 return beerAdvisorService.addRating(ratingInput.userId(),
EREADHE (nd 63 ratingInput.beerId()
23 @ screenshot-beeradvisor.png ¢ : £
@ © soreenstot-sraphiat o 64 zatingTopus comant i),
7 settings.gradle 65 ratingInput.stars()
@ (b External Libraries 66);
=®Scratehes and Consoles ’
9 67 }
68
&= BeerAdvisorGraphQLController
24:14 LF UTF-8 2 spacesx o

Demo GraphQL with Java

https://spring.io/projects/spring-graphq|

Step 1: GraphQL schema

* Every GraphQL APl must be defined in a Schema

* The schema defines Types and Fields

* Only requests and responses that match the schema are processed
and returned to the client

* Schema Definition Language (SDL)

Schema Definition with SDL

Object Type type Rating {
. 1id: ID!
Fields comment: String!
_____________________________ stars: Int

Schema Definition with SDL

type Rating {

id: ID! : Return Type (non-nullable)
comment: String!

stars: Int

Return Type (nullable)

Schema Definition with SDL

type Rating {

id: ID!

comment: String!
stars: Int
author: User!

}

type User/{
id: ID!
name: String!

}

Referenz auf anderen Typ

Schema Definition with SDL

type Rating { G

id: ID!

comment: String!
stars: Int
author: User!

}

type User {
id: ID!
name: String!

J

type Beer {
name: String!
ratings: [Rating!]!

Liste / Array

Schema Definition with SDL

type Rating {

id: ID!

comment: String!
stars: Int
author: User!

}

type User {
id: ID!
name: String!

J

type Beer {

name: String!

ratings: [Rating!]!
ratingsWithStars(stars: Int!}): [Rating!]!

}

Arguiments

Root-Types: Entry-Points into the API (Query, Mutation, Subscription)

Root-Type type Query { .
("Query) beers: [Beer!]!| - Root-Fields
beer (beerId: ID!): Beer~

}

'ffw‘l’tfz_pe - type Mutation {

("Mutation”) addRating(newRating: NewRating): Rating!
}

Root-Type type Subscription {

("Subscription") onNewRating: Rating!

}

Example: graphql-java

* Note that there are other (high level) frameworks for Java (Spring for GraphQL,
MicroProfile GraphQL) that you should consider, but all of these are backed by graphql-
java

DataFetcher

» ADataFetcher determines and returns the value for a Field
* Required for all fields of your Root-Types (Query, Mutation)
* For all other fields, Reflection is used (getter/setter, Maps, ...) by
default

* ADataFetcher isafunctional Java interface

DataFetcher

* Ingraphgl-java resolver functions are called DataFetcher

DataFetcher
* Ingraphgl-java resolver functions are called DataFetcher

» ADataFetcher determines and returns the value for a Field
* Required for all fields of your Root-Types (Query, Mutation)
* For all other fields, Reflection is used (getter/setter, Maps, ...) by
default

DataFetcher
* Ingraphgl-java resolver functions are called DataFetcher

» ADataFetcher determines and returns the value for a Field
* Required for all fields of your Root-Types (Query, Mutation)
* For all other fields, Reflection is used (getter/setter, Maps, ...) by
default

* ADataFetcher isafunctional Java interface

interface DataFetcher<T> {
T get(DataFetchingEnvironment environment);

}

Implementing DataFetchers
* Example: Asimple field

Schema Definition type Query {
beer(id: ID!): Beer

}

Implementing DataFetchers
* Example: Asimple field

Schema Definition type Query {
beer(id: ID!): Beer
}
"data": {
Query query { beer(id: "B1") "beer":
{ name price } { "name": "...

} }

)

"price": 5.3 }

Implementing DataFetchers
* Example: Asimple field

Schema Definition

Query

Data Fetcher

type Query {
beer(id: ID!): Beer

}
"data": {
query { beer(id: "B1") "beer":
{ name price } { "name": "...", "price": 5.3 }
} }

public class QueryDataFetchers {
DataFetcher<Beer> beer = new DataFetcher<>() {
public Beer get(DataFetchingEnvironment env) {
String id = env.getArgument("id");
return beerRepository.getBeerById(id);
}
s
}

Implementing DataFetchers
* Example: Asimple field

Schema Definition

Query

Data Fetcher

Assume Beer Pojo

contains "name" and "price"

type Query {
beer(id: ID!): Beer

}
"data": {
query { beer(id: "B1") "beer":
{ name price } { "name": "...", "price": 5.3 }
} }

public class QueryDataFetchers {
DataFetcher<Beer> beer = new DataFetcher<>() {

St ring id = env.getArgument ("id") ;

property

}

s

}

return beerRepository.getBeerById(id);

DataFetcher: Mutations

» technically the same as queries, but you're allowed to modify data here

Schema Definition input AddRatingInput

{
beerId: ID!
stars: Int!
+
type Mutation {
addRating(input: AddRatingInput!): Rating!
+

Data Fetcher public class MutationDataFetchers {
DataFetcher<Rating> addRating = new DataFetcher<>() {
public Rating get(DataFetchingEnvironment env) {
Map input = env.getArgument("input");
String beerId = dnput.get("beerId");
Integer starts = input.get("stars");

return ratingService.newRating(beerId, stars);

I

DataFetcher: Subscriptions

* Same as DataFetchers for Query, but must return Reactive Streams Publisher
* Typically used in Web-Clients with WebSockets

import org.reactivestreams.Publisher;

public class SubscriptionDataFetchers {
DataFetcher<Publisher<Rating>> onNewRating = new DataFetcher<>() {
public Publisher<Rating> get(DataFetchingEnvironment env) {

type Subscription { Publisher<Rating> publisher = getRatingPublisher();
onNewRating: Rating!

} return publisher;

}
s
}

DataFetcher for own Types (not Root Types)

* By default graphqgl-java uses a "PropertyDataFetcher" for all fields that are not on Root
Types

* PropertyDataFetcher uses Reflection to return the requested data from your Pojo

* (Fields not defined in your schema, but part of your Pojo are never returned to the client!)

* Your returned Pojo and GraphQL schema might not match
 Different/missing fields

DataFetcher for own Types (not Root Types)

* Example: There is no field "shops" on our Beer class

public class Beer {

query { i s
beer (id: 1) { EB‘ShopSlhere e
name o shops e -
A |
name T
}
}

}

DataFetcher for own Types (not Root Types)

You can write DataFetcher for all fields in your GraphQL API
Non-Root Fetcher works the same, as DataFetchers for Root-Fields
They receive their parent object as "Source"-Property from the DataFetchingEnvironment

query {
beer (id: 1) {
name
shops {
name
}
+
}

public class BeerDataFetchers {
DataFetcher<List<Shop>> shops = new DataFetcher<>() {

public String get(DataFetchingEnvironment env) {
Beer parent = env.getSource();
String beerId = parent.getId();

return shopRepository.findShopsSellingBeer (beerld);

}
s
}

B
Byt

-

Thank you!

Slides: https://graphql.schule/api-day2023 (PDF)
Source code: https://github.com/nilshartmann/spring-graphgl-talk

Contakt: nils@nilshartmann.net

